extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1(C4⋊Dic3) = C24.13D6 | φ: C4⋊Dic3/C2×Dic3 → C2 ⊆ Aut C22 | 48 | | C2^2.1(C4:Dic3) | 192,86 |
C22.2(C4⋊Dic3) = (C2×C12).Q8 | φ: C4⋊Dic3/C2×Dic3 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.2(C4:Dic3) | 192,92 |
C22.3(C4⋊Dic3) = C12.3C42 | φ: C4⋊Dic3/C2×Dic3 → C2 ⊆ Aut C22 | 48 | | C2^2.3(C4:Dic3) | 192,114 |
C22.4(C4⋊Dic3) = C12.4C42 | φ: C4⋊Dic3/C2×Dic3 → C2 ⊆ Aut C22 | 96 | | C2^2.4(C4:Dic3) | 192,117 |
C22.5(C4⋊Dic3) = C42.43D6 | φ: C4⋊Dic3/C2×Dic3 → C2 ⊆ Aut C22 | 96 | | C2^2.5(C4:Dic3) | 192,558 |
C22.6(C4⋊Dic3) = C23.52D12 | φ: C4⋊Dic3/C2×Dic3 → C2 ⊆ Aut C22 | 96 | | C2^2.6(C4:Dic3) | 192,680 |
C22.7(C4⋊Dic3) = C23.9Dic6 | φ: C4⋊Dic3/C2×Dic3 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.7(C4:Dic3) | 192,684 |
C22.8(C4⋊Dic3) = C24.12D6 | φ: C4⋊Dic3/C2×C12 → C2 ⊆ Aut C22 | 48 | | C2^2.8(C4:Dic3) | 192,85 |
C22.9(C4⋊Dic3) = C12.(C4⋊C4) | φ: C4⋊Dic3/C2×C12 → C2 ⊆ Aut C22 | 96 | | C2^2.9(C4:Dic3) | 192,89 |
C22.10(C4⋊Dic3) = C12.20C42 | φ: C4⋊Dic3/C2×C12 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.10(C4:Dic3) | 192,116 |
C22.11(C4⋊Dic3) = C12.21C42 | φ: C4⋊Dic3/C2×C12 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.11(C4:Dic3) | 192,119 |
C22.12(C4⋊Dic3) = C12⋊7M4(2) | φ: C4⋊Dic3/C2×C12 → C2 ⊆ Aut C22 | 96 | | C2^2.12(C4:Dic3) | 192,483 |
C22.13(C4⋊Dic3) = C23.27D12 | φ: C4⋊Dic3/C2×C12 → C2 ⊆ Aut C22 | 96 | | C2^2.13(C4:Dic3) | 192,665 |
C22.14(C4⋊Dic3) = C2×C24.C4 | φ: C4⋊Dic3/C2×C12 → C2 ⊆ Aut C22 | 96 | | C2^2.14(C4:Dic3) | 192,666 |
C22.15(C4⋊Dic3) = C24⋊2C8 | central extension (φ=1) | 192 | | C2^2.15(C4:Dic3) | 192,16 |
C22.16(C4⋊Dic3) = C24⋊1C8 | central extension (φ=1) | 192 | | C2^2.16(C4:Dic3) | 192,17 |
C22.17(C4⋊Dic3) = (C2×C12)⋊3C8 | central extension (φ=1) | 192 | | C2^2.17(C4:Dic3) | 192,83 |
C22.18(C4⋊Dic3) = C12.9C42 | central extension (φ=1) | 192 | | C2^2.18(C4:Dic3) | 192,110 |
C22.19(C4⋊Dic3) = C12.10C42 | central extension (φ=1) | 96 | | C2^2.19(C4:Dic3) | 192,111 |
C22.20(C4⋊Dic3) = C2×C12⋊C8 | central extension (φ=1) | 192 | | C2^2.20(C4:Dic3) | 192,482 |
C22.21(C4⋊Dic3) = C2×C8⋊Dic3 | central extension (φ=1) | 192 | | C2^2.21(C4:Dic3) | 192,663 |
C22.22(C4⋊Dic3) = C2×C24⋊1C4 | central extension (φ=1) | 192 | | C2^2.22(C4:Dic3) | 192,664 |
C22.23(C4⋊Dic3) = C2×C6.C42 | central extension (φ=1) | 192 | | C2^2.23(C4:Dic3) | 192,767 |